	940		National	5 Chemistry	7	-	u	Traf	ífic Li	ight
H	JAB chem	Un	it 3.4 Nuc	lear Chemis	stry	chem	Lesso	Red	Amber	Green
40	Radioactive de become more s	ecay involves chang stable nuclei by giv	ges in the nucle ring out alpha, l	i of atoms. Unstable oeta or gamma radi	e nuclei (radioisotopes) ation.	can		\odot		\odot
41 44a 46a	Alpha particle alpha alpha deflec stoppe Alpha decay	es (α) are helium r particles have a ma particles have a do ted by an electric f ed by piece of pape of ²¹⁰ Po can be w	nuclei ass number = 4 uble positive cl ield towards th or and travel on ritten as:	and an atomic num harge as they have e negatively charge ly a few centimetre $^{210}_{84}$ Po \rightarrow	hber = 2 no electrons ed plate s 206 Pb + $\frac{4}{2}\text{H}$	le Ie		3		0
42 44b 46b	Beta particles • beta p • beta p • deflec • stopp Beta decay	s (β) are electrons particles have a ma particles have a ne cted by an electric bed by thin sheet of of ⁹⁹ Mo can be wr	ejected from a n ass number = 0 gative charge field towards a f aluminium an itten as:	nucleus and an atomic num positively charge p d travel over a metr ${}^{99}_{42}\text{Mo} \rightarrow$	ber = -1 blate 0^{0} re in air -1^{e} $99^{9}TC + 0^{0}$ $43^{1}C$	5		3		\odot
43	Gamma rays (• Gamm • They c • Gamm			3		٢				
45	In nuclear equ	ations alpha, beta Alpha particle 4 2 He	a, protons and Beta Particle 0 -1 e	neutrons are writt Proton	Neutron			\odot	٢	٢
47	Half-life is the	time for half of the	nuclei of a par	ticular isotope to de	ecav.			$(\dot{\sim})$	(\odot
48	The half-life of (compound for isotopes can be	f an isotope is a cor rm or element) or p e used to date mate	istant. Half-life physical condit erials e.g. carbo	is unaffected by ter ions (solid, liquid, g on dating of ¹⁴ C.	nperature, chemical con as or solution). Radioact	ditions tive) ()		0
49	The half-life from a graph • Find y-axi • Meas halvi	of an isotope can a showing a decay a halving of the qu s e.g. 100% to 50% sure the time take ng to take place of	be determined curve. Lantity on the % or 2g to 1g n for the n the x-axis	Radiaactivity (8q)	10 15 20 25 Time (hours)	•		\odot		
50	The quantity/Calculate the half-lifCalculate the half-liftakes 45 days for 2ginto 0.1g or the radiMass (g)13.21.60.80.40.20.15 x t y_2 = 45day	Proportion of radfe of the radioisotope if itg of radioisotope to decayioisotope.No of Half Lives012345∴ t½ = 9days	ioisotope, half How long did it take with a half-life of 17 radioisotope? Mass (g) T 80 40 20 10 5 2.5 1.25 0.625	-life or time elapse for 80g of a radioisotope days 0.625g of "ime Taken (days) 0 17 34 51 68 85 102 119 days	d from the other varialA radioisotope has a half-life of 3hmuch of 64g of the radioisotope wiafter 15 hours?Time (hrs)Mass (g)06433261698124152g	Dies: ours. How ill remain portion 1 1/2 1/4 1/4 1/16 1/32		3		٢
51 52	Radioisotopes Radioi Radioi Radioi 	have a range of us sotopes can be use sotopes used must Gamma radiatior Medicines with v	es in medicine a ed to release ga : take account o n is too penetra ery long half-li	and in industry. mma radiation to k of type of radiation i ting to be used as n ves are unsuitable f	ill cancer cells released and half-life redicines in the body for use in the body.			::		\odot

Na	Nat5 Past Paper Question Bank															
Traffic	Lights		Unit 3.4 Nuclear Chemistry										UNDERCIPI			N 8 (
Outcome	<u>Original</u>	<u>New</u>	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5						
Ourcome	<u>Paper</u>	<u>Paper</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	2020	2021						
40								L4a								
41			L1a	L2a			mc22									
44a 46a			L5a	L2b			L12a									
42																
44b	L12c	L14c			mc18	L5b	L12c									
46b																
43							mc22									
45			Lbc					L8e								
47								L4b(i)								
48								L4b(iii)								
49						L5a(i)										
50	L12a	L14a	L5b	L2c(i)	mc19	L5a(ii)	L12b	L4b(ii)								
51 52	L12b	L14b		L2c(ii)	mc17											

Nat5	Answer	% Correct		Reas	soning								
2016 "c 17	A	70	☑A a radioisotope which i ☑B gamma rays are too pa ☑C a smoke detector with ☑D gamma rays are too p	A a radioisotope which is alpha emitting and has a long half life B gamma rays are too penetrating to be stopped by a smoke C a smoke detector with a short half-life would need to be replace too often D gamma rays are too penetrating to be stopped by a smoke									
2016 "c 18	A	50	²³⁴ Th	$^{234}_{90}$ Th $\rightarrow ^{234}_{91}$ Pa $+ ^{0}_{-1}$ e									
2016				Time (years)	% ¹⁴ C Content								
MC	C	45		0	100								
19	C			5600	50								
17				11200	25								
2018 "c 22	D	-	 ☑A beta particles bend to ☑B alpha particles bend to ☑C beta particles bend to ☑D X is alpha (bends tow 	owards the posit owards the nega owards the posit ards to negative	rive electrode ` itive electrode ` ive electrode ` electrode) & Y is	Y is not a beta particle Y is not a alpha particle K is not a beta particle s gamma (does not bend)							

Nat5	Answer											
2014	Deputrion/deflection	Positiv	re (alpha) p	articles mai	nly travel st	raigl	ht throug	h the layer	of gold. Some of the			
10	kepuision/deflection	positiv	re (alpha) p are also po	articles tra ositive and d	vel close to t eflect the p	the r assii	nuclei of 1 na positiv	the gold ato e (alpha) po	oms. The nuclei of the articles by repulsion c	e gold of		
10	by (positive) nucleus	positiv	ves charges	3.		4551	19 200111	e (alpha) pe				
2014			Radiation	Stopped b	y Charge		Atomic	Number	Mass Number]		
E	Alpha	-	Alpha	Paper	Positive		2	2	4	_		
50	·	-	вета Gamma	Aluminium	Negative No charae	: e (- Gamma ra	1 diation is a	U wave not a particle			
			ounnu		Time (day	<u>م</u>	Enc			1		
2014				-		(5)	1	100%				
56	$\frac{1}{4}$			-	8		1	50%				
50				-	16		<u>2</u> <u>1</u>	25%				
2014					10		4	2378				
2014	Sodium	Mass	s numbe	r of X	= 28 - 4	= 7	24					
5c		Aton	nic numb	per of X	= 13 - 2	= :	11	Element	· 11 = sodium			
2015			24	41 .		4.			237			
20	Neptunium		9	₅₅ Am	\rightarrow	2 H	le	+	⁻ ₉₃ Np			
		 	Dediction	Stopped L	(Chana-	-	A+c:-	Number	MagaNiumbar	1		
2015		-	Alpha	baper	Positive		ATOMIC	Number 2	Mass Number 4	-		
2b	alpha	-	Beta	aluminium	Negative	:	-	1	0	-		
			Gamma	lead	No charge		Gamma radiation is a		a wave not a particle			
					Time (I	hr)	Mas	s (g)				
2015					0	0		3				
20(1)	1g				16		4	1				
L C(1)					32		í	2				
2015		Amer	Americium-242 has too short a half-life to be effective in a smoke-detector as									
2	Longer half-life	the ar	the amount of Americium would half every 16 hours. It would not be operationa									
∠C (ii)		within days of manufacture. Americium-241 has a half-life of 432years and will be working for many lifetimes but must be disposed of carefully								viii		
2017												
5 cm	14 days		phosphor	us-32 con	rent = 100% tent = 50%	6, 11 Tir	ime= Uda me= 14da	iys ha	alf-life = 14 days			
<u></u>			pilospiloi	us-52 con	iem - 50%	,		ly3 J				
			Ma	ss (g) No	of half li	ves	:					
2017				20	0		If 1 k	nalf-life	= 14 days			
50(11)	42days			10	1		31	half-lives	s = 42 days			
Ju (ii)				5	2							
				2.5	3							
2017				³² D	3	2 –	-		0			
5b	Beta B			15 P	→ 10	6 S)	+	_1 e			
		Rad	diation	Al	oha		Be	ta	Gamma			
		٨	Nass		4		0)	No mass			
2018	Alpha Particles are	Cł	narge		2		-1	L	No charge			
120	stonned by nener	Stop	oped by	Pa	per		Alumi	nium	Thick lead			
120	sinhher ny haher.	Def	lection	Towards	negative	Т	owards	positive	No defection	1		
			Use	Smoke	etectors	Me	easuring	thickness	Radiotherapy can	cer		
		Ľ		CHICKE		of	paper in	paper mil	l treatment			
		1										

				Num	ber of half-	lives Fra	tion				
					0		1				
2018					1	1	/ ₂				
12h	14.8				2	1	′ ₄				
160			3		1	/ ₈					
			$4 \frac{1}{16}$								
		1 halt-lite	e = 3./ y	lears	4 halt-lives	= 4x3./ye	ars = 14.8 yea	ars			
2018	increases		204 —		204		0				
120	stays the same		$_{81}^{-1}$	· ·	→ ^{_0} 1	Pb ⁺	_1e				
160			01		01		-				
2019											
4a	nucleus	All nuclear r	All nuclear reactions take place in the nucleus.								
2019											
	One answer from:	The time for half of the the ti					The time for h	alf of the			
4 D(i)		nius	s to decay	/	(radio)activ	The decay	nuclei 10	uecuy			
		Time (davs)	Percentage							
2019				Remaining		12.5% remaining after 24 days					
	87.5%	0			100% 50%	87.5% must have decayed by 24 days					
4D(II)		16			25%						
		24	ļ	1	2.5%						
2019							1.1.1.6				
	Stays the same	Halt-lite is	independ	ent of	concentratior \	, temperature	e and state of	natter			
4D(III)			, gus or s) 						
2019	1	Particle	Prot	on	Neutron	Electron	Alpha	Beta			
8e	j ⁻ n	Symbol		b	¹ n	[°] e	⁴ He	[°] e			
	-		1	Γ	0	-1	2	-1 -			

Na	Nat5 Past Paper Question Bank															
Traffic	: Lights		Unit 3.4 Nuclear Chemistry											-ne		
Outcomo	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Ourcome	2000	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	2007	2008	2009	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
40			mc29					mc39		L17a		L12a				mc40
41										1160						
44a				L3b			L14a(i)	mc40	mc39	L100					mc40	
46a										2100						
42								mc40							mc40	
44b		L1b	L2b	mc39	L2a		mc40	1.3a	L5a	mc39	mc40	L12b	L4a		L7b	L8a
46b																
43	mc29							mc40		mc39					mc40	
45	L4a	L1a				mc39				mc40	L6a			L12a	L7a	
47																
48		mc30 g32b	L2c	mc38		L6b(ii)					L6c		L4b(i)	mc39	L7c(ii)	L8c(ii)
49			L2a	L3a					L5b(i)			L12c(i)			L7c(i)	
50	mc30	L1c			L2b(ii)	mc40	mc39	L3b(ii)	mc40	L16c	L6b		L4c	L12b		L8c(i)
51 52							L14a(ii)		L5b(ii)			mc40				L8b

Н	Answer	% Correct	Reasoning
2000 ^{Higher} MC 29	С	69	On $\beta\text{-emission},$ the mass number stays the same and the atomic number increases by one. This would turn a group 4 element into a group 5 element
2000 ^{Higher} MC 30	С	83	Time (years)0214263Fraction1 $\frac{1}{2}$ = 0.5 $\frac{1}{4}$ = 0.25 $\frac{1}{8}$ = 0.125
2001 ^{Higher} MC 30	С	37	Half life is the same as the nucleus splitting is the same with the same half-life. The intensity of the radiation is different as 1g of radium metal contains more radium nuclei than 1g of radium oxide
2002 ^{Higher} MC 29	D	46	Strontium has atomic number of 38 (date booklet) → 38 protons. Number of neutrons = mass number - atomic number = 90 - 38 = 52 neutrons ∴ratio of neutrons:protons = 52:38 = 1.37:1
2003 Higher MC 38	С	58	 A Half-life must be the same for the same isotope of lead B Half-life must be the same for the same isotope of lead C Same lead isotope means same half life & different intensity due to concentration Intensity of radiation will be different as there is less radioactive lead in the solution
2003 Higher MC 39	A	69	β -emission: neutron splits into proton (stays in nucleus) and electron (ejected from nucleus) β -emission: atomic number increases +1 and Mass number stays same
2005 ^{Higher} MC 39	В	70	Neutron capture involves changing the number of neutrons so there is no change of atomic number (ie number of protons). Answer B is the only answer with the same atomic number as ³² P.
2005 ^{Higher} MC 40	В	57	α -emission → loss of mass of 4 \therefore mass no.=200 is starting isotope. 25% of starting isotope (200) remains so 2 half-lives have passed 2 half-lives = 8 days \therefore 1 half-life = 4 days
2006 ^{Higher} MC 39	С	66	25% of ¹⁴ C left → 2 half-lives have passed. 1 half-life = 5600 years ∴ 2 half-lives = 2x5600 = 11200 years
2006 ^{Higher} MC 40	В	70	$\beta\text{-emission:}$ atomic number increases by 1 & mass number remains constant \therefore mass number remains at 231 during $\beta\text{-emission}$
2007 ^{Higher} MC 39	С	57	Number of protons = atomic number = 38 Number of neutrons = mass number - atomic number = 90 - 38 = 52 Neutron : Proton 52 : 38 1.37 : 1

2007 ^{Higher} MC 40	D	72	Alpha Particles are positive :. attracted towards negative plate (Path X) Beta Particles are negative :. attracted towards positive plate (Path Z) Gamma Rays have no charge :. travel straight through (Path Y)
2008 ^{Higher} MC 39	С	92	${}^{227}_{90}\text{Th} \rightarrow {}^{223}_{88}\text{Ra} \rightarrow {}^{219}_{86}\text{Rn} \rightarrow {}^{215}_{84}\text{Po} \rightarrow {}^{211}_{82}\text{Pb}$ $\therefore 4 \text{ alpha particles removed}$
2008 ^{Higher} MC 40	С	83	Fraction Time (years) 1 0 0.5 21 0.25 42 0.125 63
2009 ^{Higher} MC 39	A	35	Radiation TypeAlphaBetaGammaDeflectionDown to bottomUp to topStraight throughSize of deflectionNearer centre as Alpha are heavyNearer top as Beta are light(No deflection)
2009 ^{Higher} MC 40	С	49	${}^{31}_{15}P + {}^{1}_{0}n \rightarrow {}^{32}_{15}P$
2010 ^{Higher} MC 40	A	85	$ \begin{array}{rcrcr} ^{211}_{83}\text{Bi} &\to \frac{^{207}}{^{81}}\text{Th} &+ \frac{^{4}}{^{2}}\text{He} \\ ^{207}_{81}\text{Th} &\to \frac{^{207}}{^{82}}\text{Pb} &+ \frac{^{0}}{^{-1}}\text{e} \\ \end{array} $
2011 ^{Higher} MC 40	A	65	 ☑A Alpha radiation stopped by smoke particles and long half-life for device long life ☑B Gamma radiation would not be stopped by smoke particles and cannot be used ☑C A short half-life would mean the smoke-detector would not work for long ☑D Gamma radiation would not be stopped by smoke particles and cannot be used
2013 ^{Higher} MC 39	В	74	 A This graphs shows the relationship between chemical reaction rate and temp B Rate of radioactive decay does not change when temperature is varied C This graph represents the activity of an enzyme against temperature D This graph shows an increase in rate when temperature is increased
2014 ^{Higher} MC 40	D	76	 A beta radiation is negative and is attracted to the positive plate B beta radiation is negative and is attracted to the positive plate C beta radiation is negative and is attracted to the positive plate D alpha bends to negative, beta bends to positive and gamma does not bend
2015 OLD Higher MC 40	A	61	 ☑A radioactive calcium will have a different mass number from non-radioactive calcium ☑B All calcium atoms have same chemical properties (as they have 2,8,8,2 arrangement) ☑C All calcium atoms have an atomic number if 20 ☑D All Calcium atoms have 20 electrons and an arrangement of 2,8,8,2

Н	Answer	Reasoning								
2000 _{Higher} 4a	Nuclear Equation with:	$^{252}_{98}Cf + ^{11}_{5}B \rightarrow ^{257}_{103}Lr + 6^{1}_{0}n$								
2001 _{Higher} 1a	Neutron or $\frac{1}{0}$ n	The atomic and mass numbers must balance on both sides of the equation: $\begin{array}{c} 99\\ 43\\ \end{array} Tc + \begin{array}{c}1\\ 0\\ \end{array} n \xrightarrow{100}{43} Tc \\ 43\\ \end{array} Tc$								
2001 _{Higher} 1b	$^{100}_{43}$ Tc $\rightarrow ^{101}_{44}$ Ru + $^{0}_{-1}$ e	RadiationEffect on Atomic NumberEffect on Mass NumberAlphaDecrease by 2Decrease by 4BetaIncrease by 1No changeGammaNo changeNo change								
2001 _{Higher} 1c	<u>1</u> 8	Time (s)No of half-livesFraction Left001161 $\frac{1}{2}$ 322 $\frac{1}{4}$ 483 $\frac{1}{8}$								
2002 _{Higher} 2a	5800 years	when Radioactive Count Rate = 72 → time = 0 years when Radioactive Count Rate = 36 → time = 5800 years Time for radioactive count to half (half-life) = 3800 - 0 years = 5800 years								
2002 _{Higher} 2b	${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$	3-emission: neutron splits into proton (stays in nucleus) and electron (emitted from nucleus) β-emission: atomic increases by 1 and mass number is unchanged								
2002 _{Higher} 2c	Fossil fuels take millions of years to form not thousands	Too many half-lives of 14 C will have passed over the millions of years needed to form coal for accurate measurement of the radioactivity (not much 14 C is left!)								
2003 _{Higher} 3a	Graph showing points at:	Time (days)0140280420560Mass of 210Po (g)200100502512.5								
2003 _{Higher} 3b	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He	lpha-emission: atomic number decreases by 2 and mass number decreases by 4								
2004 _{Higher} 2a	$^{32}_{15}P \rightarrow ^{32}_{16}S + ^{0}_{-1}e$	β eta emission involves the splitting of a neutron in the nucleus into a proton (stays in the nucleus) and an electron (emitted as a β eta particle)								
2004 ^{Higher} 2b(ii)	42.9days	Time (days)Mass of 32P remaining08g14.34g28.62g42.91g								
2005 _{Higher} 6D(ii)	Same half-life	The half-life does not change regardless of the compound/state the isotope of U is in.								
2006 _{Higher} 14a(i)	$^{241}_{95}$ Am $\rightarrow ^{237}_{93}$ Np+ $^{4}_{2}$ He	lpha-emission: atomic number decreases by 2 and mass number decreases by 4								

2006 Higher 14a(ii)	alpha particle not very penetrating	Alpha particles are stopped by paper and are not very penetrating. Beta particles are stopped by aluminium and are more penetrating. Gamma rays are (not completely) stopped by lead and are very penetrating.								
2007 _{Higher} 3a	$_{1}^{3}H \rightarrow _{2}^{3}He+_{-1}^{0}e$	Radiation TypeEffect on Atomic NumberEffect on Mass NumberAlphadecrease by 2decrease by 4Betaincrease by 1no changeGammano changeno change								
2007 _{Higher} 3b(ii)	36.9 years	Percentage Remaining Fraction Remaining Time Taken 100% 1 0 years 50% $\frac{1}{2}$ 12.3 years 25% $\frac{1}{4}$ 24.6 years 12.5% $\frac{1}{8}$ 36.9 years								
2008 _{Higher} 5a	Beta β Particle	$^{99}_{42}$ Mo $\rightarrow ^{99}_{43}$ Tc $+ ^{0}_{-1}$ e								
2008 _{Higher} 5b(i)	Curve with points:	Time (hours)06121824Mass (g)0.50.250.1250.060.003								
2008 _{Higher} 5b(ii)	Short half-life	The half life of isotope is short enough that it does last in the body for very long.								
2009 _{Higher} 16a	Answer to include:	$^{227}_{90}$ Th $\rightarrow ^{223}_{88}$ Ra $+ ^{4}_{2}$ He								
2009 _{Higher} 16b	Alpha particles are not very penetrating	Alpha particles are stopped by a piece of paper and are not very penetrating. It is unlikely that a significant amount of alpha particles would leave the body and affect others.								
2009 _{Higher} 16c	0.48g	Time (days)% Remaining 012.5% remaining \therefore 87.5% has decayed0100%12.5% remaining \therefore 87.5% = 0.42g 100% = 0.42g $x^{100}/_{87.5}$ = 0.48g								
2009 _{Higher} 17a	neutron : proton 7 : 6 1.17 : 1	${}^{13}_{6}C$ No of protons = atomic number = 6 No. of neutrons = mass number - atomic number = 13-6 = 7								
2010 _{Higher} 6a	Equation showing:	${}^{11}_{6}\mathcal{C} \rightarrow {}^{11}_{5}\mathcal{B} + {}^{0}_{+1}\mathcal{e}$								
2010 _{Higher} 6b	20	Rate64032016080No of $t_{\frac{1}{2}}$ 0123 $3x t_{\frac{1}{2}}$ = 60 min $\therefore t_{\frac{1}{2}}$ = 60/3 = 20min								

2010 Higher 6C	Pure ¹¹ C contains more ¹¹ C nuclei than same mass of glucose containing ¹¹ C atoms	The half-life of ¹¹ C is the same regardless of temperature and chemical form (element, compound or ion). The half-life of the ¹¹ C nucleus is constant. The intensity of the radiation depends on the number of ¹¹ C nuclei present. Pure ¹¹ C contains more nuclei than the same mass of a compound containing ¹¹ C nuclei.						
2011 _{Higher} 12a	Proton:neutron ratio is too high/low	There is a zone of stability in the proton:neutron ratio. Atoms which are outwith this zone are unstable and can breakdown by radioactive decay.						
2011 _{Higher} 12b	Answer to include:	$ \begin{array}{cccc} {}^{131}_{53}\mathbf{I} & \rightarrow & {}^{131}_{54}\mathbf{X}\mathbf{e} & + & {}^{0}_{-1}\mathbf{e} \end{array} $						
2011 _{Higher} 12c(i)	8 days	Mass of iodine = 100pgtime = 0 daysMass of iodine = 50pgTime = 8 days						
2012 _{Higher} 4a	Equation showing:	$^{89}_{38}$ Sr $\rightarrow ^{89}_{39}$ Y + $^{0}_{-1}$ e						
2012 _{Higher} 4 b(i)	no effect/no change	talf-life is not effected by physical state (solid/liquid/gas/solution), hemical state (atom/molecule/ion) or by changes of temperature						
2012 _{Higher} 4 C	<u>1</u> 4	Time (days)Fraction remaining0114 $\frac{1}{2}$ 28 $\frac{1}{4}$						
2013 _{Higher} 12a	0 +1	${}^{40}_{19} K \rightarrow {}^{40}_{18} Ar + {}^{0}_{+1} e$						
2013 _{Higher} 12b	2.52×10 ⁹	If 75% of ⁴⁰ K has decayed then 25% of ⁴⁰ K must remain Percentage Time 100% 0 50% 1.26×10 ⁹ years 25% 2.52×10 ⁹ years						
2014 Higher 7a	¹ ₁ p	Total mass number before and after the arrow must equal10						
2014 ^{Higher} 7b	Neutron splits into proton and electron	During Beta-emission, a neutron splits into a proton and an electron. The electron is emitted as a beta particle and the proton remains in the nucleus. $ \begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$						
2014 _{Higher} 7c(i)	24225 years	From graph: 5% of carbon-14 content at 4.25 half lives 1 half-life = 5700 years 4.25 half-lives = 5700 years x ^{4.25} /1 = 24225 years						

2014 _{Higher} 7c(ii)	Too many half-lives have passes to measure	When t life wit	oo many half-live h any accuracy as	es have passed, it is not p s there is too little ¹⁴ C le	ossible to measure ft in the sample.	half-					
2015 _{Higher} 80	Equation showing:		60 27 C	$o \rightarrow \frac{60}{28} \text{Ni} +$	° e						
2015 _{Higher} 8b	Gamma is high energy or very penetrating	Gamma radiation is high energy electromagnetic radiation. It needs a thic layer of lead metal to stop it and will penetrate the packaging and kill the bacteria inside to sterilise the insides of the package until it is opened.									
2015 _{Higher} 8C(i)	21.08		Radioactivity 1 1/2 1/4 1/4 1/8 1/16	Number of Half-lives 0 1 2 3 4	Time (years) 0 1x5.27 = 5.27 2x5.27 = 10.54 3x5.27 = 15.81 4x5.27 = 21.08						
2015 _{Higher} 8C(ii)	No change	The half-life of a radioisotope is determined by the ratio of protons to neutrons. Changes in temperature, concentration, physical state and chemical state do not alter the half-life of the radioisotope.									